Dilation Analyticity in Constant Electric Field

نویسنده

  • B. Simon
چکیده

We extend the analysis of Paper I from two body dilation analytic systems in constant electric field to JV-body systems in constant electric field. Particular attention is paid to what happens to isolated eigenvalues of an atomic or molecular system in zero field when the field is turned on. We prove that the corresponding eigenvalue of the complex scaled Hamiltonian is stable and becomes a resonance. We study analyticity properties of the levels as a function of the field and also Borel summability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D ec 2 00 7 DYNAMICAL RESONANCES AND SSF SINGULARITIES FOR A MAGNETIC SCHRÖDINGER OPERATOR

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First,...

متن کامل

Dynamical Resonances and Ssf Singularities for a Magnetic Schrödinger Operator

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First,...

متن کامل

Schrδdinger Operators With Magnetic Fields III. Atoms in Homogeneous Magnetic Field

We prove a large number of results about atoms in constant magnetic field including (i) Asymptotic formula for the ground state energy of Hydrogen in large field, (ii) Proof that the ground state of Hydrogen in an arbitrary constant field has Lz = 0 and of the monotonicity of the binding energy as a function of B, (iii) Borel summability of Zeeman series in arbitrary atoms, (iv) Dilation analyt...

متن کامل

O ct 2 00 7 DYNAMICAL RESONANCES AND SSF SINGULARITIES FOR A MAGNETIC SCHRÖDINGER OPERATOR

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First,...

متن کامل

0 71 0 . 05 02 v 4 [ m at h . SP ] 1 1 Se p 20 08 DYNAMICAL RESONANCES AND SSF SINGULARITIES FOR A MAGNETIC SCHRÖDINGER OPERATOR

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1981